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LETTER TO THE EDITOR

Relaxation processes and entropic traps in the
Backgammon model
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‡ Institute of Theoretical Physics, University of Amsterdam, Valckenierstraat 65,
1018 XE Amsterdam, The Netherlands

Received 9 December 1996, in final form 5 March 1997

Abstract. We examine the density–density correlation function in a model recently proposed
to study the effect of entropy barriers in glassy dynamics. We find that the relaxation proceeds
in two steps with a fast beta process followed by alpha relaxation. The results are physically
interpreted in the context of an adiabatic approximation which allows one to separate the two
processes and define an effective temperature in the off-equilibrium dynamics of the model. We
investigate the behaviour of the response function associated with the density and find violations
of the fluctuation dissipation theorem.

The relaxation in supercooled liquids near the glass transition has a characteristic two-
step form. Experiments on very different materials reveal the existence of a first fast
relaxation process, called beta relaxation, followed by a much slower one, called alpha
relaxation [1]. One of the most striking successes of mode coupling theory [2] is its ability
to capture this phenomenon and to give a correct prediction for the relation among the
exponents characterizing the two relaxations. However, we believe that comprehension
of the basic mechanisms underlying the relaxation in glasses is missing. Experiments in
glasses have been recently interpreted in terms of traps models [3, 4]. In these models, the
system evolves among traps—or metastable states—which have a lifetime that grows with
decreasing temperature, and finally diverges at the glass transition. The two-step relaxation
follows naturally from the hypothesis that equilibration inside a trap occurs much faster than
‘jumps’ among different traps. How a trap may be defined and described for real systems
or microscopic models is an interesting open problem. If the traps have to be interpreted
as the result of energy barriers in a rough energy landscape, one finds the difficulty that
the relaxation should appear as a random process even on a large scale. A ‘jump’ among
two different traps should imply a discontinuity in various quantities as the energy or the
correlation function. This problem was already noted in [4], where it was proposed, as
a way out, that real systems could be composed of a large number of quasi-independent
subsystems leading to the observed self-averaging properties for the different quantities. In
this direction, it can be instructive to investigate a different mechanism for slow relaxation
and, in particular, the role of entropy barriers.
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In this letter we study the nature of density fluctuations in the so-called ‘Backgammon
model’, a microscopic model that has proved useful in studying some mechanisms
underlying the glassy relaxation and, in particular, the role of entropy barriers. The model
[5] is a Boltzmann gas withN particles in anN site space with Hamiltonian given by the
total number of empty sites,

H = −
N∑
r=1

δnr ,0 (1)

where r = 1, . . . , N denotes the sites of the space andnr the occupation number of the
site r. The system evolves following a single-particle Metropolis dynamics: at each sweep
a particle to move and an arrival site are chosen at random. The particle is moved with
probability 1 if the energy does not increase and with probability exp(−β) if the move costs
one unit of energy. The relaxation of the energy has been studied in detail in [5–9]; we
briefly re-assume here the main results. At zero temperature the dynamics are slower and
slower as time goes by: the average density of particles in the occupied states increases
and as a consequence the dynamics slows down. This observation has allowed for the
identification of fast and slow degrees of freedom: the relaxation within the occupied sites
at a given time proceeds much faster than the variation of the energy and the diffusion
of ‘towers of particles’. This allows a self-consistent treatment of the dynamics which is
in very good agreement with the exact solution. At large times the occupation probability
P(n, t) mimics the equilibrium probability,

P(n, t) = eβ(t)δn,0−ζ(t)
ζ(t)n−1

n!
(2)

with an effective time-dependent temperatureT (t) = 1/β(t) larger than the real one, and
effective fugacityζ(t) related toβ(t) by the condition of constant density〈nr(t)〉 = 1,
i.e. eβ(t) + eζ(t) − 1 = ζ(t) eζ(t). At zero temperature, the decay of the energy follows the
law E(t) ∼ −1+ O(1/ log(t)), whereas at small but finite temperatures this behaviour is
cut off for times of the order of the relaxation timeτ ∼ exp(β)/β2 when the relaxation
becomes exponential. Probing the system on finite time scales, for example mimicking
heating–cooling experiments, one finds a characteristic glassy behaviour as hysteresis loops
for the energy [6]. Additional information on the off-equilibrium dynamics is gained by
studying the energy–energy autocorrelation function [5]

CE(t, s) = 〈δnr (t),0δnr (s),0〉 − E(t)E(s)
E(s)(1− E(s)) .

This quantity shows aging at zero temperature with a scaling behaviourCE(t, s) ∼
(s/t)

1
2 (log(s)/ log(t)) [9]. Again, at finite temperature this scaling is observed up to times

of the order of the relaxation time.
Here we concentrate our attention on the relaxation of the density–density correlation

function, a quantity that is measured in experiments on real systems [1]. This is a better
quantity to use when studying fast processes in systems since on short timescales local
densities vary while the energy stays essentially constant.

The fluctuations of the local density around its average〈nr(t)〉 = 1 are studied by
introducing the density–density correlation function

C(r)(t, s) = 〈nr(t)nr(s)〉 =
∑
n,m

nmP (r)(n, t |m, s)P (r)(m, s) (3)

and its associated response

R(r)(t, s) = δ〈nr(t)〉
δhr(s)

(4)
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having denoted asP (r)(n, t) the probability that stater is occupied byn particles at timet ,
P (r)(n, t |m, s) the same probability conditioned to havem particles at times andhr as an
infinitesimal inhomogeneous ‘pressure field’ coupled linearly with the local density in the
Hamiltonian†. We will present data for the normalized correlation

Cnorm(t, s) = 〈nr(t)nr(s)〉 − 1

〈nr(s)2〉 − 1
.

Choosing a site-independent initial distribution, the correlation function remains site
independent while the response at finite time depends on the distribution ofhr ′ on the
different sites in the form of a dependence onµ(r) = Prob(hr ′ > hr) andν(r) = Prob(hr ′ <
hr). Despite this, in the following we will drop the indexr from the various quantities.
At equilibrium, correlation and response are time translation invariant and related by the
fluctuation–dissipation theorem relationT R(t − s) = ∂C(t − s)/∂s. In off-equilibrium
conditions it has been often proved useful to characterize the violation of equilibrium by
the ‘fluctuation dissipation ratio’ [10, 11]

x(t, s) = T R(t, s)

(∂C(t, s)/∂s)
. (5)

The evolution of the previously defined functions can be studied starting from the
hierarchy of equations forP(n, t), P(n, t |m, s) and related quantities following a procedure
similar to the one used in [7]. One can then derive closed integral equations in terms of a
few functions that can be integrated numerically [7] or analytically in the long time limit [9].
Details of this analysis, and in particular the full set of hierarchies for the density–density
correlation (3) and the associated response function (4), will be presented elsewhere. In
this paper we integrate directly, truncating the hierarchy to some large order. In practice
we have found that for low enough temperature and not too large times the truncation at
n = 100 yields excellent results.

Let us now discuss the form of the density correlation function in equilibrium. Starting
from a random initial configuration, after times of the order ofτα ≈ eβ/β2 the system
eventually reaches equilibrium. The correlation function is then time translation invariant
and can be studied exactly as a Laplace transform. It turns out that for temperatures small
enough the dominant contribution to the equilibrium correlation function for all times is
given by the superposition of two Debye processes,

Ceq
norm(t) =

ζ − 1+ e−t/ζ

ζ
e−t/τα (6)

with τα = 2((ζ −1) eζ +1)/ζ 2 ≈ 2 eβ/β2� ζ . The fast and slow processes at equilibrium
are related to the relaxation within occupied states and to diffusion, respectively. We note
that the value of the plateau at equilibrium is(ζ − 1)/ζ , which corresponds to complete
decorrelation within occupied states but no diffusion. The equilibrium curve forT = 0.05 is
the dashed curve in figure 1. In the time window shown in figure 1 the correlation function
stays essentially constant and equal to the plateau value(ζ −1)/ζ ' 0.94, decaying to zero
afterwards. Here the alpha relaxation time isτα ' 3× 106.

Regarding the off-equilibrium correlation function, we show in figure 1 the data for
theCnorm(t, s) for T = 0.05 as a function oft − s for various values ofs. Over the time
window we explore, the system is far from being thermalized. The integration atT = 0 on
the same time window leads to almost identical results. Theα andβ processes are well

† A homogenous pressure would not have any effect in the system due to the constraint on the global density∑N
r=1 nr = N .
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Figure 1. The density–density correlation functionCnorm(t, s) as a function oft−s for different
values ofs = 1, 10, 102, 103, 104 (from left to right) atT = 0.05 (continuous curves). The
existence of a plateau separates the beta and alpha regimes. The dashed curve corresponds to
the equilibriumCeq

norm(t − s). The curves withs = 103, 104 are excellently fitted by the form
(9) with b(s) = 2.20, 3.85, respectively. For the same times,ζ(s) = logP(1, s) = 8.93, 11.51.

separated for large enoughs. In this case, the shape of the off-equilibrium relaxation curve
can be understood qualitatively within the framework of the adiabatic approximation. The
decorrelation time for the density among filled states is much smaller that the time needed
to diffuse and/or change sensibly the energy; there must then be a timescale such that we
can approximate

P(n, t |m, s) ≈ δm,0δn,0+ (1− δm,0)(1− δn,0) P (n, s)
1− P0(s)

. (7)

This equation reflects the simple fact that empty states never become occupied. The
second factor is determined by the closure condition

∑
n P (n, t |m, s) = 1. Consequently

Cnorm(t, s) = ζ(s)− 1

ζ(s)
. (8)

For short times (t − s � s), ζ(s) = − log(P1(s)) does not vary too much; it is then natural
to describe the beta relaxation by form (6) just substitutingζ by ζ(s). In this way we have
checked that we correctly describe even the beginning of the alpha relaxation. However,
the best combined description of slowα relaxation together withβ relaxation is obtained
by functions of the aging form:

Cnorm(t, s) ≈ ζ(s)− 1+ e−(t−s)/ζ(s)

ζ(s)

(1+ b(s))
(1+ (b(s)√t log(t)/

√
s log(s)))

(9)

a form inspired by that of the energy–energy correlation function found in [9]. At finite
temperature,b(s) is a crossover function to form (6).

In figure 2 we see that the two relaxation processes are also manifest in the response
function. In order to characterize better the two processes in off-equilibrium conditions
we study the relation between the response and correlation during the dynamics. The first



Letter to the Editor L363

Figure 2. The response function for the values ofs = 1, 10, 102, 103, 104 (from top to bottom)
at T = 0.05.

quantity of interest is the value of the fluctuation–dissipation ratio at equal times. We see
thatx(t, t) reaches values close to one long before total equilibrium sets in. This is a further
indication that the system is in local equilibrium and yields in a natural way the notion of
a trap in this system. Note that the traps in the Backgammon model are purely entropic.
This means that the system escapes from the trap even at zero temperature when thermal
excitations are absent. In other words, the dynamics are slowed down by entropic traps
which can be considered as metastable states with a finite (energy-dependent) lifetime.

Most interestingly, we find that for large times (large values ofs) x(t, s) remains nearly
constant in each of the two processes. This is shown in figure 3 where we plotx(t, s) as
a function of 1− Cnorm(t, s) for different values ofs. We find thatx(t, s) is close to 1
in the beta relaxational process and jumps to as-dependent smaller valuexα(s) at a value
Cnorm(t, s) = qEA which remains constant in the alpha process.

It is rather natural, with the adiabatic approximation in mind, to look for a possible
interpretation ofx as the ratio between the effective and actual temperature. Unfortunately
we found negative evidence for such interpretation of the data. For low enough temperature
and times smaller thanτα the actual value ofx(t, s) is nearly temperature independent.
The step behaviour ofx(t, s) is quite reminiscent of the dynamics in spin glasses with one
step of replica symmetry breaking [10]. This in turn represents the suitable off-equilibrium
generalization of mode coupling theory [12] in the case of a Whitney fold glass singularity,
i.e. precisely the case where there are well separatedα andβ relaxations. We do not know
at this stage if this corresponds to a deep analogy or is a mere coincidence. We stress that
at equilibrium, the ending of the beta relaxation, as well as the onset of theα relaxation,
are described by power laws in mode coupling theory. As is seen in (6), in our case the
equilibrium relaxation is the superposition of two exponentials.

Summarizing, we have shown the existence of two step relaxational processes (alpha
and beta relaxation) in the Backgammon model, which is a simple model where the slow
dynamics is a consequence of pure entropic barriers. We have closed the dynamical
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Figure 3. The fluctuation–dissipation ratiox(t, s) for different values ofs = 10, 102, 103, 104

(from bottom to top) as a function of 1−Cnorm(t, s) at T = 0.05. The two plateaux correspond
to the alpha and beta relaxations.

equations for the density–density correlation function and the response of the system to
a staggered field coupled to the density. Our results for those quantities and the fluctuation
dissipation ratio allow for a clear identification of the fast (beta) and slow (alpha) relaxation
processes in this system. The physical interpretation of these processes leads naturally to the
concept of an entropic trap. In the case of entropic traps, the entropy barrier associated with
the trap itself depends on the number of available configurations within the trap. Because the
height of the entropic barriers varies in a continuous way, the dynamics proceeds slowly but
without macroscopic jumps in the energy. The results presented here for the Backgammon
model are expected to apply for slowly relaxing systems where the dynamics are mainly
driven by entropy barriers (as for instance, Bose–Einstein condensation). A detailed account
of our work will be given elsewhere.

FR acknowledges FOM in the Netherlands for financial support and ICTP in Trieste for its
kind hospitality in the final stages of this work.
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